腎機能検査の基礎知識

腎機能検査の基礎知識を解説します。

概要

腎臓は、腎臓は排泄臓器として働き、身体の恒常性(ホメオスタシス)を保つ機能を有する臓器です。

具体的な腎臓の機能は、①不要な最終代謝産物、老廃物、薬物などの排泄、②電解質バランス、浸透圧、酸塩基平衡の調節、③エリスロポエチン、ビタミンDなどの物質の産生、④レニンーアンギオテンシンーアルドステロン系の活性化と制御、⑤糖や薬物の代謝などです。

これらの機能が適切に発揮されているかどうかを判断するために、複数の検査を実施します。

代表的な検査項目に、血中尿素窒素(BUN)、血清クレアチニン(Cre)、糸球体濾過量(GFR)があります。

血中尿素窒素

尿素窒素とは

尿素窒素は、尿素中の窒素量です。

BUNとSUN

血中の尿素窒素は、BUN(Blood Urea Nitrogen)と呼ばれます。

BUNを測定するとき、実際は血清中の尿素窒素を測定していることから、SUN(Serum Urea Nitrogen)とも呼ばれます。

尿素は、経口摂取した蛋白や組織蛋白の最終代謝産物であり、肝細胞におけるオルニチン-アルギニン-尿素サイクルの経路で、アンモニアから生成されます。

尿素とGFR

尿素は分子量が小さいため、糸球体から自由に濾過されます。

そのため、後述する糸球体濾過量(GFR)の指標となります。

ただし、尿素の産生量は、蛋白異化率や、利尿状態(尿細管再吸収)に影響されます。

したがって、異化亢進があったり、利尿状態/抗利尿状態があったりするときは、BUNは、GFRの良い指標にはなりません。

基準範囲と解釈

基準範囲は、8~20mg/dL です。

BUNは、GFRが約50%に低下するまでは、わずかに上昇します。

その後は、腎機能の悪化とともに徐々に上昇し、GFRが25~30%以下になると急速に上昇します。

20~60mg/dL程度までの上昇では、つぎのような原因が考えられます。

SUN の過剰産生

原因の例として、高蛋白食,アミノ酸輸液,消化管出血,体組織の崩壊(絶食・外科的侵襲・火傷・高熱),悪性腫瘍,重症感染症

SUN の排泄障害

原因の例として、尿路閉塞,腎機能障害,循環血液量の減少(脱水・出血など)

さらに、60mg/dL を超えると腎不全、100mg/dL を超えると尿毒症などが考えられます。

他方、0~8mg/dLと低値のときは、妊娠,低蛋白食,劇症肝炎,肝硬変末期,低窒素血症,強制利尿(マンニトール利尿・尿崩症など),先端肥大症,成長ホルモンや蛋白同化ホルモンの影響,などが考えられます。

なお、BUN は食事、蛋白異化、脱水による影響を大きく受けるため、血清Cr が同時に測定できる場合には、血清Cr が腎機能の指標として用いられます。

血清クレアチニン

クレアチニンとは

クレアチニンは、筋肉運動のエネルギー源となるクレアチンの最終代謝産物です。

クレアチニンとGFR

クレアチニンは腎臓の糸球体で濾過されて排出されます。

GFRが低下すると、クレアチニン排泄量が低下し、血清クレアチニン値が上昇します。

また、尿素窒素とは異なり、外的因子(食餌蛋白摂取など)の影響をほとんど受けません。

さらに、尿細管ではほとんど再吸収されずに尿中に排泄されるため、利尿状態に影響されにくいです。

したがって、クレアチニンは、個人のGFRの変動をみるときの有用な指標となります。

基準範囲と解釈

クレアチニンは筋肉運動の代謝産物であるため、血清クレアチニン値は、筋肉量に比例した量となります。

筋肉量に性差があるため、基準範囲は、男性で「0.6 ~ 1.0 mg/dL」,女性で「0.4 ~ 0.8 mg/dL」です。

筋肉の少ない小児や肥満者では、体重に比べて低値をとる傾向があります。

筋肉量の多い人や脱水では、高値となる場合があります。

血清クレアチニンは、GFRが約50%以下になると上昇しはじめます。

年齢の影響

高齢者では、加齢による影響はほとんどありません。加齢とともにGFRと筋肉量の双方が低下するため、血清クレアチニン値は、ほぼ一定となるからです。

筋肉量の減少

年齢に関係なく、低栄養や神経・筋疾患、身体活動度の低下などにより筋肉量が病的に減少しているときは、クレアチニン産生量が低下しているため、腎機能障害が顕著なときにのみ、血清クレアチニン値が高値となります。

薬剤の影響

通常、少量のクレアチニンが尿細管から分泌されています。

しかし、尿細管からのクレアチニン分泌を抑制する薬剤の影響があると、腎機能障害の有無にかかわらず、血清クレアチニン値は上昇します。

たとえば、ST合剤,シメチジン,シスプラチン,フルシトシン,セフェム系抗菌薬,アミノグリコシド系抗菌薬などです。

糸球体濾過量(GFR)

糸球体濾過量とは

1分間あたりにどれだけの血液(血漿)が濾過されているかを示したものが糸球体濾過量(glomerular fi ltration rate: GFR)です。

GFRの評価に用いる物質は、糸球体のみから濾過され、尿細管で再吸収や分泌されない物質です。

国際的には、イヌリンを用いるイヌリンクリアランス(Cin)がGFR測定のゴールデンスタンダードとされています。

イヌリンクリアランス(Cin)

生体内に投与されたイヌリンは、血液と細胞間に分布し、糸球体で濾過され、尿細管では分泌・再吸収を受けずに尿中に排泄されます。

したがって、イヌリンはGFR を測定する上で理想的な薬物動態を有しています。

ただし、イヌリンクリアランス(Cin)の測定は、手技が煩雑であることなどから日常検査としては普及していません。

GFRの推測

クレアチニンクリアランス(Ccr)

血液中のクレアチニンは、筋肉中のクレアチンの脱水により生成されて、血中に放出されたのち、糸球体でほぼすべてが濾過され、尿細管では再吸収されません。

したがって、現在の日常診療では、上記のイヌリンクリアランスの代用として、生体内の内因性物質であるクレアチニンを用いた内因性クレアチニンクリアランス(Ccr) が最も用いられています。

計算式は、つぎの通りです。

Ccr=(Ucr ✕ V/Pcr) ✕ (1.73/A)

Ccr:クレアチニンクリアランス(mL/min/1.73m2)

Ucr:尿中Cr 濃度(mg/dL)

Pcr:血清Cr 濃度(mg/dL)

V:単位時間(1 分間)あたりの尿量(mL/min)

A:身長・体重から求めた体表面積(m2)

なお、方法としては、短時間法と、24時間法とがあります。

注意点

クレアチニンは、尿細管でわずかに(10 ~ 40%)分泌されています。

よって、クレアチニンクリアランス(Ccr)は、実際のGFRよりも高めに計算される点に注意が必要です(1.3 倍程度)。

推算糸球体濾過量(eGFR)

そのほかに、GFRを推測する指標として、推算糸球体濾過量(estimated GFR:eGFR)があります。

eGFRを求めるには種々の計算式がありますが、その中のひとつに、日本人のための計算式があります。

血清クレアチニン値(Cr)と年齢・性別から求めるもので、eGFRcreatと呼ばれます。

eGFRcreatは、つぎの計算式で求めます。

男性の計算式

eGFRcreat( mL/min/1.73m2)= 194 × Cr-1.094 × 年齢-0.287

女性の計算式

eGFRcreat( mL/min/1.73m2)= 194 × Cr-1.094 × 年齢-0.287 × 0.739

ただし、小児の場合は、これと異なる計算式で求めるのが適切とされています(日本小児腎臓病学会)。

注意点

上述のように血清Cr は腎機能が50%を下回らないと上昇しないため、eGFRで初期の腎機能障害を発見することはできません。

また、eGFRは、同じ年齢・性別のなかでの平均的な体格を前提にして計算されています。よって、筋肉の減少した高齢者や女性では、血清Cr値は低値を示すことから、実際のGFRよりも、eGFRは高めに算出されます。

推算値の解釈

eGFR値を解釈するとき、参考となる基準として、慢性腎臓病(chronic kidney disease:CKD)の重症度分類(ステージ分類)があります。

そこでは、eGFR値が、「90以上」では正常または高値、「60 ~ 89」では正または軽度低下、「45 ~ 59」では軽度~ 中等度低下、「30 ~ 44」では中等度~ 高度低下、「15 ~ 29」では高度低下、「15未満」では末期腎不全 (ESKD)とされています。